Metamodel Assisted Evolutionary Algorithm for Multi-objective Optimization of Non-steady Metal Forming Problems

نویسنده

  • L. Fourment
چکیده

Multi-objective optimization problems are considered in the field of non-steady metal forming processes, such as forging or wire drawing. The Pareto optimal front of the problem solution set is calculated by a Genetic Algorithm. In order to reduce the inherent computational cost of such algorithms, a surrogate model is developed and replaces the exact the function simulations. It is based on the Meshless Finite Difference Method and is coupled to the NSGA-II Evolutionary Multi-objective Optimization Algorithm, in a way that uses the merit function. This function offers the best way to select new evaluation points: it combines the exploitation of obtained results with the exploration of parameter space. The algorithm is evaluated on a wide range of analytical multi-objective optimization problems, showing the importance to update the metamodel along with the algorithm convergence. The application to metal forming multi-objective optimization problems show both the efficiency of the metamodel based algorithms and the type of practical information that can be derived from a multi-objective approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving ‎‎‎Multi-objective Optimal Control Problems of chemical ‎processes ‎using ‎Hybrid ‎Evolutionary ‎Algorithm

Evolutionary algorithms have been recognized to be suitable for extracting approximate solutions of multi-objective problems because of their capability to evolve a set of non-dominated solutions distributed along the Pareto frontier‎. ‎This paper applies an evolutionary optimization scheme‎, ‎inspired by Multi-objective Invasive Weed Optimization (MOIWO) and Non-dominated Sorting (NS) strategi...

متن کامل

Metamodel-Assisted Simulation-Based Optimization of a Real-World Manufacturing Problem

Many real-world manufacturing problems are too complex to be modeled analytically and in these settings simulation-based optimization is a highly valuable tool. It has shown to be a useful technique for systems improvement and has been applied to address a wide range of industrial optimization problems. Simulation runs are, however, often computationally expensive and to enhance the efficiency ...

متن کامل

A MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM USING DECOMPOSITION (MOEA/D) AND ITS APPLICATION IN MULTIPURPOSE MULTI-RESERVOIR OPERATIONS

This paper presents a Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D) for the optimal operation of a complex multipurpose and multi-reservoir system. Firstly, MOEA/D decomposes a multi-objective optimization problem into a number of scalar optimization sub-problems and optimizes them simultaneously. It uses information of its several neighboring sub-problems for optimizin...

متن کامل

Pareto-optimal Solutions for Multi-objective Optimal Control Problems using Hybrid IWO/PSO Algorithm

Heuristic optimization provides a robust and efficient approach for extracting approximate solutions of multi-objective problems because of their capability to evolve a set of non-dominated solutions distributed along the Pareto frontier. The convergence rate and suitable diversity of solutions are of great importance for multi-objective evolutionary algorithms. The focu...

متن کامل

OPTIMIZATION OF STEEL MOMENT FRAME BY A PROPOSED EVOLUTIONARY ALGORITHM

This paper presents an improved multi-objective evolutionary algorithm (IMOEA) for the design of planar steel frames. By considering constraints as a new objective function, single objective optimization problems turned to multi objective optimization problems. To increase efficiency of IMOEA different Crossover and Mutation are employed. Also to avoid local optima dynamic interference of mutat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013